13621188892
影响焊接效果好坏的因素
发布时间:2019-10-17 浏览:880次

1-191025144K9364

  影响可焊性的因素

  焊接性是金属材料的加工性能。除了材料本身的性质外,它还受到工艺条件,结构条件和使用条件的影响。

  (1)物质因素

  材料包括贱金属和焊料。在相同的焊接条件下,决定母材可焊性的主要因素是其物理和化学性能。

  物理性质,例如熔点,导热系数,线性膨胀系数,密度,金属的热容量等,都会影响热循环的过程,熔化,结晶,相变等,从而影响可焊性。纯铜具有很高的导热系数,焊接过程中的热量流失迅速,温度上升幅度大,沟槽不易熔化,在焊接过程中需要更强烈地加热。如果热源功率不足,则会发生渗透不足的缺陷。铜,铝等导热系数高的材料,晶体池快速,且容易产生气孔。钛,不锈钢和其他导热系数低的材料在焊接过程中具有较大的温度梯度,较高的残余应力和较大的变形。此外,由于高温的长停留时间,所以热影响区晶粒长大,这不利于接头性能。铝和奥氏体不锈钢的线膨胀系数大,接头变形和应力大。铝及其合金的密度很小。焊接时,熔池中的气泡和非金属夹杂物不容易逸出,焊缝中会留有气孔和熔渣。

  就化学性质而言,它主要取决于金属和氧的亲和力。例如铝,钛及其合金具有很高的化学活性。在高温焊接下很容易被氧化。一些金属对氢气和氮气等气体敏感。焊接时,必须对其进行可靠的保护,例如惰性气体保护或真空焊接。否则很难实现焊接。

  如果是异种金属焊接,则只有物理和化学性质与晶体结构彼此接近的金属才更容易实现焊接。对于钢的焊接,影响可焊性的主要因素是所含的化学成分。具影响力的元素是碳,硫,磷,氢,氧和氮,它们在焊接过程中容易出现缺陷,并降低接头的性能。其他合金元素,如锰,硅,铬,镍,铝,钛,钒,铌,铜,硼等,都在不同程度上增加了焊接接头的硬化趋势和裂纹敏感性。因此,钢的焊接性总是随着碳含量和合金元素含量的增加而降低。

  另外,钢材的熔炼和轧制状态,热处理状态和组织状态在不同程度上影响可焊性。因此,近年来,开发并开发了各种CF钢(抗裂钢),Z方向钢(抗层状撕裂钢),TMCP钢(控制轧制钢)等,并通过精炼或精炼来制造。精炼或精炼晶粒以及控制轧制工艺等手段来提高钢的可焊性。

  焊接材料直接参与焊接过程中的一系列化学冶金反应,这决定了焊接金属的成分,结构和性能。

  并形成缺陷。如果焊接材料选择不当,则与母材不匹配。不仅会得到满足使用要求的接头,而且还会引起诸如裂纹和结构性能变化的缺陷。因此,也保证了正确选择焊接材料以获得高质量的焊接。


Related Information
相关信息
焊接技术及焊接的发展历史
焊接技术及焊接的发展历史
  焊接技术焊接技术自发明至今已有百余年的历史,工业生产中的一切重要产品,如航空、航天及核能工业中产品的生产制造都离不开焊接技术。当前,新兴工业的发展迫使焊接技术不断前进,如微电子工业的发展促进了微型连接工艺和设备的发展;陶瓷材料和复合材料的发展促进了真空钎焊、真空扩散焊、喷涂以及粘接工艺的发展。所以焊接技术将随着科学技术的进步而不断发展,主要体现在以下几个方面:  1能源方面目前,焊接热源已非常丰富,如火焰、电弧、电阻、超声、摩擦、等离于、电子束、激光束、微波等等,但焊接热源的研究与开发并未终止,其新的发展可概括为三个方面:首先是对现有热源的改善,使它更为有效、方便、经济适用,在这方面,电子束和激光束焊接的发展较显著;其次是开发更好、更有效的热源,采用两种热源叠加以求获得更强的能量密度,例如在电子束焊中加入激光束等;第三是节能技术。由于焊接所消耗的能源很大,所以出现了不少以节能为目标的新技术,如太阳能焊、电阻点焊中利用电子技术的发展来提高焊机的功率因数等。  2计算机在焊接中的应用弧焊设备微机控制系统,可对焊接电流、焊接速度、弧长等多项参数进行分析和控制,对焊接操作程序和参数变化等作出显示和数据保留,从而给出焊接质量的确切信息。目前以计算机为核心建立的各种控制系统包括焊接顺序控制系统、PID调节系统、控制及自适应控制系统等。这些系统均在电弧焊、压焊和钎焊等不同的焊接方法中得到应用。计算机软件技术在焊接中的应用越来越得到人们的重视。目前,计算机模拟技术已用于焊接热过程、焊接冶金过程、焊接应力和变形等的模拟;数据库技术被用于建立焊工档案管理数据库、焊接符号检索数据库、焊接工艺评定数据库、焊接材料检索数据库等;在焊接领域中,CAD/CAM的应用正处于不断开发阶段,焊接的柔性制造系统也已出现。  3焊接机器人和智能化焊接机器人是焊接自动化的革 命性进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化新方式,焊接机器人的主要优点是:稳定和提高焊接质量,保证焊接产品的均一性;提高生产率,一天可24小时连续生产;可在有害环境下长期工作,改善了工人劳动条件;降低了对工人操作技术要求;可实现小批量产品焊接自动化;为焊接柔性生产线提供了技术基础。为提高焊接过程的自动化程度,除了控制电弧对焊缝的自动跟踪外,还应实时控制焊接质量,为此需要在焊接过程中检测焊接坡口的状况,如熔宽、熔深和背面焊道成形等,以便能及时地调整焊接参数,保证良好的焊接质量,这就是智能化焊接。智能化焊接的发展重 点在视觉系统,它的关键技术是传感器技术。虽然目前智能化还处在初级阶段,但有着广阔前景,是一个重要的发展方向。有关焊接工程的专家系统,近年来国内外已有较深入的研究,并已推出或准备推出某些商品化焊接专家系统。焊接专家系统是具有相当于专家的知识和经验水平,以及具有解决焊接专门问题能力范围的计算机软件系统。在此基础上发展起来的焊接质量计算机综合管理系统在焊接中也得到了应用,其内容包括对产品的初始试验资料和数据的分析、产品质量检验、销售监督等,其软件包括数据库、专家系统等技术的具体应用。  4提高焊接生产率焊接技术提高焊接生产率是推动焊接技术发展的重要驱动力。提高生产率的途径有二个方面:其一,是提高焊接熔敷率。手弧焊中的铁粉焊、重力焊、躺焊等工艺;埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。例如三丝埋弧焊,其工艺参数分别为2200AX33V;1400AX40V1100AX45V,采用坡口截面较小,背面采用挡板或衬垫,50-6mm的钢板可一次焊透成形,焊速达到0.4m/min以上,其熔敷效率是手弧焊的100倍以上。其二,是减少坡口截面及熔敷金属量,近10年来突出的成就是窄间隙焊接。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式。例如,钢板厚度由50-300mm,间隙均可设计为13mm左右,因而所需熔敷金属量成数倍、数十倍地降低,从而大大提高了生产率。窄间隙焊接的主要技术关键是如何保证两侧熔透和保证电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。电子束焊、激光束焊及等离子弧焊时,可采用对接接头,且不用开波口,因此是理想的窄间隙焊接法,这是它们受到广泛重视的重要原因之一。
返回顶部