13621188892
关于不锈钢的钎焊知识
发布时间:2019-04-23 浏览:959次

  关于不锈钢的钎焊知识

  不锈钢定义是主要加铬元素使钢处钝化状态,就是具有不锈特性的钢。不锈钢是主要为Cr-Fe系和Cr-Fe-Ni系三元合金。铁是基体,铬是主要的合金元素。为了使钢具有不锈的特性,ω(Cr)必须高于12%。此时,钢的表面能迅速形成致密的Cr2O3氧化膜,使钢的电极电位和氧化介质中的耐腐蚀性发生突变性提高。在非氧化介质(HCl、H2SO4)中,其实铬的作用并不明显,除铬外,不锈钢中还须加入能使钢钝化的Ni、Mo等元素,加入合金元素基本上分为两类:

  一类是形成或者稳定奥氏体的元素:如碳。镍、锰、氮等,其中碳和氮使用程度**大;另一类是缩小或者封闭γ相即形成铁素体的元素:如铬、硅、钼、钛、铌、铝等。由于合金元素的不同,不锈钢在温室下呈现不同的组织。根据其组织不同,不锈钢可分为铁素体不锈钢、马氏体不锈钢、奥氏体不锈钢、奥氏体-铁素体不锈钢和沉淀硬化不锈钢。

  在各种类型的不锈钢中奥氏体不锈钢的应用**为广泛,品种也**。由于奥氏体不锈钢的Cr、Ni含量较高,因此在氧化性、中性以及弱还原性介质中均具有良好的耐腐蚀性。奥氏体不锈钢的塑韧性优良,冷热加工性能俱佳,因而广泛应用于建筑装饰、食品工业、医疗器械、纺织印染设备、石油、化工、原子能、航空和航天等工业领域。

  为突出对比性,特列出钢碳的相应的物理性能。碳钢密度与不锈钢差别不大。电阻率则按碳钢、铁素体不锈钢、奥氏体不锈钢顺序递增。奥氏体不锈钢的电阻率可达碳钢的5倍左右。奥氏体不锈钢的线胀系数比碳钢的约大50%,而马氏体不锈钢和铁素体不锈钢的线胀系数大体上和碳钢的相等。奥氏体不锈钢的热导率比碳钢的低,仅为其1/3左右。

  另二类不锈钢的热导率为碳钢的1/2左右。

  不锈钢的钎焊性

  1、表面氧化膜。如上所述,不锈钢除含主要合金元素铬外,往往还含镍、锰、钛、钼、铌、铝等元素。在表面上形成的主要氧化物有Me2O3(Me=Fe、Ni、Cr、Mn、Ti)和MeO·Me”2O3(Me’=Fe、Ni、Mn;Me”=Cr、Fe、Ni、Mn、Ti)两大类。其中Cr2O3和TiO2相当稳定,比较难以去除。在空气中钎焊时必须采用活性强的钎剂以清除这些氧化物;在保护气氛中钎焊时,只有在低**的高纯气氛和足够高的温度下氧气膜才能被还原;真空钎焊时,要求良好的真空度(10-2Pa以上)和足够高的温度,才能取得良好的效果。

  2、钎焊加热温度。对铁素体不锈钢来说,只要钎焊加热温度不使其晶粒发生猛烈长大,即可认为合适。对马氏体不锈钢来说,钎焊加热温度对性能的影响极大,因为马氏体不锈钢是在淬火回火状态下使用的。马氏体不锈钢的钎焊加热温度有两种选择:一种是钎焊加热温度与淬火温度相匹配。例如对1Crl3和2Crl3不锈钢来说,选择1000~1050℃的钎焊加热温度,钎焊完毕后快速冷却,达到母材淬火的目的,然后再进行回火,这样可以获得**佳的综合力学性能。

  另一种是将钎焊温度选择在低于钢的回火温度,例如对lCrl3不锈钢来说低于700℃。这样,已淬火回火的母材在钎焊过程中也不会发生软化现象,母材仍保持原有的综合性能。对奥氏体不锈钢来说钎焊加热温度不宜过高。当钎焊温度高于1150℃时,晶粒开始猛烈长大。奥氏体不锈钢晶粒一旦长大,就不能再用热处理方法使其晶粒细化。所以在选择钎料和钎焊工艺参数时,应避免在1150℃以上长时间加热。不含稳定元素钛或铌而含碳量又较高的奥氏体不锈钢,如lCrl8Ni9、2Crl8Ni9等,当停留在500~750℃范围内时,碳化铬将沿晶界析出,造成晶界贫铬,在腐蚀介质中使用极易产生晶间腐蚀。因此这类钢应避免在此温度区间内钎焊。奥氏体-铁素体钢的钎焊加热温度同样不宜过高,以免晶粒长大。沉淀硬化不锈钢的钎焊加热温度的选择原则上与马氏体不锈钢相同,即钎焊加热温度必须与钢的热处理制度相匹配,以获得**佳力学性能。

  3、奥氏体不锈钢有应力开裂的倾向,应在去除内应力的状态下进行钎焊。

  不锈钢的表面准备

  不锈钢表面的清洗方法包括气相除油;溶剂氢氧化钠除油;喷吵或喷丸;用钢丝刷或不锈钢棉擦拭或砂布打磨和酸洗等。对于批量生产的工件可以用以下酸洗液清洗(质量分数):

  1、10%H2SO4,15%HCl,5%HNO3,余量水。酸洗温度100℃,酸洗时间30s。然后用15%HNO3水溶液作为光泽处理,溶液温度100℃,时间约10s。

  2、10%HNO3,6%H2SO4,50g/LHF的水溶液,酸洗温度20℃,酸洗时间10min。酸洗后用60~70℃的热水仔细洗涤10min,然后在60~70℃的热空气中干燥。

  3、15%HNO3,50g/LNaF,85%的H2O溶液,室温下浸蚀5~10min,然后用热水洗涤,再在100~120℃温度下烘干。

  **种溶液适用于厚件表面的厚氧化皮。后两种溶液用于薄件表面的薄氧化膜。酸洗应严格按工艺规程进行以免产生过腐蚀。

  不锈钢的软钎焊:软钎焊的钎焊温度低,对不锈钢性能本身的影响极小。软钎焊主要用锡铅钎料,以锡含量高的锡铅钎料为宜,如HLSn63Pb、HLSn60Pb、HLSn50Pb和HLSn40Pb,因为这些钎料的润湿性好。也可用锡银钎料。钎剂的选择是关键。必须采用活性强的钎剂以去除表面的氧化膜。

  常用的钎剂有两种:一种是正磷酸水溶液(H3PO4960g,H2O445g);

  另一种是氯化锌盐酸水溶液(ZnCl21360gNH4C1140g,HCl85g,H2O4L)。磷酸水溶液的活性时间短,必须采用快速加热的钎焊方法。钎剂残渣具有强腐蚀性,钎焊后必须清洗干净。


Related Information
相关信息
焊接技术及焊接的发展历史
焊接技术及焊接的发展历史
  焊接技术焊接技术自发明至今已有百余年的历史,工业生产中的一切重要产品,如航空、航天及核能工业中产品的生产制造都离不开焊接技术。当前,新兴工业的发展迫使焊接技术不断前进,如微电子工业的发展促进了微型连接工艺和设备的发展;陶瓷材料和复合材料的发展促进了真空钎焊、真空扩散焊、喷涂以及粘接工艺的发展。所以焊接技术将随着科学技术的进步而不断发展,主要体现在以下几个方面:  1能源方面目前,焊接热源已非常丰富,如火焰、电弧、电阻、超声、摩擦、等离于、电子束、激光束、微波等等,但焊接热源的研究与开发并未终止,其新的发展可概括为三个方面:首先是对现有热源的改善,使它更为有效、方便、经济适用,在这方面,电子束和激光束焊接的发展较显著;其次是开发更好、更有效的热源,采用两种热源叠加以求获得更强的能量密度,例如在电子束焊中加入激光束等;第三是节能技术。由于焊接所消耗的能源很大,所以出现了不少以节能为目标的新技术,如太阳能焊、电阻点焊中利用电子技术的发展来提高焊机的功率因数等。  2计算机在焊接中的应用弧焊设备微机控制系统,可对焊接电流、焊接速度、弧长等多项参数进行分析和控制,对焊接操作程序和参数变化等作出显示和数据保留,从而给出焊接质量的确切信息。目前以计算机为核心建立的各种控制系统包括焊接顺序控制系统、PID调节系统、控制及自适应控制系统等。这些系统均在电弧焊、压焊和钎焊等不同的焊接方法中得到应用。计算机软件技术在焊接中的应用越来越得到人们的重视。目前,计算机模拟技术已用于焊接热过程、焊接冶金过程、焊接应力和变形等的模拟;数据库技术被用于建立焊工档案管理数据库、焊接符号检索数据库、焊接工艺评定数据库、焊接材料检索数据库等;在焊接领域中,CAD/CAM的应用正处于不断开发阶段,焊接的柔性制造系统也已出现。  3焊接机器人和智能化焊接机器人是焊接自动化的革 命性进步,它突破了焊接刚性自动化的传统方式,开拓了一种柔性自动化新方式,焊接机器人的主要优点是:稳定和提高焊接质量,保证焊接产品的均一性;提高生产率,一天可24小时连续生产;可在有害环境下长期工作,改善了工人劳动条件;降低了对工人操作技术要求;可实现小批量产品焊接自动化;为焊接柔性生产线提供了技术基础。为提高焊接过程的自动化程度,除了控制电弧对焊缝的自动跟踪外,还应实时控制焊接质量,为此需要在焊接过程中检测焊接坡口的状况,如熔宽、熔深和背面焊道成形等,以便能及时地调整焊接参数,保证良好的焊接质量,这就是智能化焊接。智能化焊接的发展重 点在视觉系统,它的关键技术是传感器技术。虽然目前智能化还处在初级阶段,但有着广阔前景,是一个重要的发展方向。有关焊接工程的专家系统,近年来国内外已有较深入的研究,并已推出或准备推出某些商品化焊接专家系统。焊接专家系统是具有相当于专家的知识和经验水平,以及具有解决焊接专门问题能力范围的计算机软件系统。在此基础上发展起来的焊接质量计算机综合管理系统在焊接中也得到了应用,其内容包括对产品的初始试验资料和数据的分析、产品质量检验、销售监督等,其软件包括数据库、专家系统等技术的具体应用。  4提高焊接生产率焊接技术提高焊接生产率是推动焊接技术发展的重要驱动力。提高生产率的途径有二个方面:其一,是提高焊接熔敷率。手弧焊中的铁粉焊、重力焊、躺焊等工艺;埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。例如三丝埋弧焊,其工艺参数分别为2200AX33V;1400AX40V1100AX45V,采用坡口截面较小,背面采用挡板或衬垫,50-6mm的钢板可一次焊透成形,焊速达到0.4m/min以上,其熔敷效率是手弧焊的100倍以上。其二,是减少坡口截面及熔敷金属量,近10年来突出的成就是窄间隙焊接。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式。例如,钢板厚度由50-300mm,间隙均可设计为13mm左右,因而所需熔敷金属量成数倍、数十倍地降低,从而大大提高了生产率。窄间隙焊接的主要技术关键是如何保证两侧熔透和保证电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。电子束焊、激光束焊及等离子弧焊时,可采用对接接头,且不用开波口,因此是理想的窄间隙焊接法,这是它们受到广泛重视的重要原因之一。
返回顶部